

India's Most Comprehensive & the Most Relevant Test Series designed according to the latest pattern of exams!

JEE MAIN

JEE ADV.

WBJEE

MHT CET

and many more...

Click here to join Test Series for 2022

It's time for you to crack upcoming IIT JEE Main & Advanced and other competitive exams with India's Most Trusted Online Test Series. Many questions at JEE Main 2021 were same/similar to the ones asked in our test series. That's the power of our test series!

Trusted by thousands of students & their parents across the nation

Our result in JEE Main 2021

150+

Got 99+ percentile (overall)

301

Got **99+ percentile** in one or more subjects

85%

Improved their score by **25 percentile**

89%

Felt **overall confident** after the test series

Click here to join Test Series for 2022

FREE Question Bank & Previous Year Questions for

JEE MAIN

JEE ADV.

BITSAT W

WBJEE MHT CET

and many more...

Why download MARKS?

- Chapter-wise PYQ of JEE Main, JEE Advanced, NEET, AIIMS, BITSAT, WBJEE, MHT CET etc.
- Chapter-wise NTA Abhyas questions
- Taily practice challenge and goal completion
- Bookmark important questions and add them to your notebooks
- Create unlimited Custom Tests

And all this for FREE. Yes, FREE! So what are you waiting for, download MARKS now.

4.8

Rating on Google Play

30,000+

Students using daily

1,00,000+

Questions available

BINOMIAL THEOREM

1. STATEMENT OF BINOMIAL THEOREM

 $(x + a)^n = {}^nC_0x^n + {}^nC_1x^{n-1}a + {}^nC_2x^{n-2}a^2 + \dots + {}^nC_na^n$ (where $n \in N$)

· ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,....., ${}^{n}C_{n}$ are binomial coefficients ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

General Term = $T_{r+1} = {}^{n}C_{r} x^{n-r} a^{r}$

- There are (n+1) terms in the expansion of $(x + a)^n$.
- The sum of powers of a and x in each term of expansion is n.
- · The binomial coefficients in the expansion of $(x + a)^n$ equidistant from the beginning and the end are equal.

2. GREATEST BINOMIAL COFFICIENT

- · If n is even : When $r = \frac{n}{2}$ i.e. ${}^{n}C_{n/2}$ takes maximum value.
- · If n is odd : $r = \frac{n-1}{2}$ or $\frac{n+1}{2}$ i.e. ${}^nC_{\frac{n-1}{2}} = {}^nC_{\frac{n+1}{2}}$ and take maximum value.

3. MIDDLE TERM OF THE EXPANSION

- If n is even $T_{\left(\frac{n}{2}+1\right)}$ is the middle term. So the middle term $T_{\left(\frac{n}{2}+1\right)}={}^nC_{n/2}\,x^{n/2}\,y^{n/2}$
- \bullet If n is odd $T_{\left(\frac{n+1}{2}\right)}$ and $T_{\left(\frac{n+3}{2}\right)}$ are middle terms. So the middle terms are

$$T_{\left(\frac{n+1}{2}\right)} = {^n} C_{\left(\frac{n-1}{2}\right)} x^{\frac{n+1}{2}} y^{\frac{n-1}{2}} \text{ and } T_{\left(\frac{n+3}{2}\right)} = {^n} C_{\left(\frac{n+1}{2}\right)} x^{\frac{n-1}{2}} y^{\frac{n-1}{2}}$$

4. TO DETERMINE A PARTICULAR TERM IN THE EXPANSION

In the expansion of $\left(x^-\pm\frac{1}{x}\right)^n$, if x^m occurs in T_{r+1} , then r is given by $r=\frac{n^--m}{+}$

The term which is independent of x, occurs in T_{r+1} , then r is $r = \frac{n}{r}$

5. BINOMIAL COEFFICIENT PROPERTIES

(1)
$$C_0 + C_1 + C_2 + \dots + C_n = 2^n$$

(2)
$$C_0 - C_1 + C_2 - C_3 + \dots + (-1)^n C_n = 0$$

[2] Binomial Theorem

(3)
$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

(4)
$$C_0C_r + C_1C_{r+1} + \dots + C_{n-r}C_n = {2n \choose n-r} = {2n! \over (n+r)!(n-r)!}$$

(if
$$r = 0$$
) $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{2n!}{n! \, n!}$

(if
$$r = 1$$
) $C_0 C_1 + C_1 C_2 + C_2 C_3 + \dots + C_{n-1} C_n = {2n \choose n-1} = {2n! \over (n+1)!(n-1)!}$

(5)
$$C_1 + 2C_2 + 3C_3 + \dots + nC_n = n \cdot 2^{n-1}$$

(6)
$$C_1 - 2C_2 + 3C_3 - \dots + (-1)^n$$
. $nC_n = 0$

(7)
$$C_0 + 2C_1 + 3C_2 + \dots + (n+1)C_n = 2^{n-1} (n+2)$$

(8)
$$C_0 + \frac{C_1}{2}x + \frac{C_2}{3}x^2 + \frac{C_3}{4}x^3 + \dots + \frac{C_n}{n+1}x^n = \frac{(1+x)^{n+1}-1}{(n+1)x}$$

$$\Rightarrow C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1} - 1}{n+1} \quad (x = 1)$$

$$\Rightarrow C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \frac{C_3}{4} + \dots + \frac{(-1)^n \cdot C_n}{n+1} = \frac{1}{(n+1)} (x = -1)$$

$$(9) \ C_0^2 - C_1^2 + C_2^2 - C_3^2 + \dots + (-1)^n C x^2 = \begin{cases} 0 & \text{if n is odd} \\ (-1)^{n/2} & \text{n }_{C_{n/2}} \end{cases}$$

6. NUMERICALLY GREATEST TERM OF BINOMIAL EXPANSION

$$(a + x)^n = C_0 a^n + C_1 a^{n-1} x + \dots + C_n x^n.$$

$$\left| \frac{T_{r+1}}{T_r} \right| = \left| \frac{{}^n C_r}{{}^n C_{r-1}} \right| \left| \frac{x}{a} \right| = \left| \frac{n-r+1}{r} \right| \left| \frac{x}{a} \right|$$

So greatest term will be T_{r+1} where $r = \begin{bmatrix} \frac{n+1}{1+\left|\frac{a}{x}\right|} \end{bmatrix}$

[.] denotes greatest integer function.

Note: If $\frac{n+1}{1+\left|\frac{a}{x}\right|}$ itself is a natural number, then $T_r = T_{r+1}$ and both the terms are numerically greatest.

Binomial Theorem [3]

7. BINOMIAL THEOREM FOR ANY INDEX

If $n \in Q$, |x| < 1, then

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3} + \dots + \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}x^{r} + \dots + \dots = 0$$

Note: In this case there are infinite terms in the expansion.

Some Important Expansions:

If |x| < 1 and $n \in Q$ then

(a)
$$(1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!}x^2 + \frac{n(n+1)(n+2)}{3!}x^3 + \dots + \frac{n(n+1)\dots(n+r-1)}{r!}x^r + \dots$$

(b)
$$(1+x)^{-n} = 1 - nx + \frac{n(n+1)}{2!}x^2 - \frac{n(n+1)(n+2)}{3!}x^3 + \dots + \frac{n(n+1)....(n+r-1)}{r!}(-x)^r + \dots$$

By putting n = 1, 2, 3 in the above results, we get the following results-

$$\cdot (1-x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^r + \dots$$

$$(1 + x)^{-1} = 1 - x + x^{2} - x^{3} + \dots + (-x)^{r} + \dots$$

$$(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + \dots + (r+1)x^r + \dots$$

$$(1 + x)^{-2} = 1 - 2x + 3x^{2} - 4x^{3} + \dots + (r + 1) (-x)^{r} + \dots$$

$$\cdot (1-x)^{-3} = 1 + 3x + 6x^{2} + 10x^{3} + \dots + \frac{(r+1)(r+2)}{2!}x^{r} + \dots$$

$$\cdot (1+x)^{-3} = 1 - 3x + 6x^{2} - 10x^{3} + \dots + \frac{(r+1)(r+2)}{2!}(-x)^{r} + \dots$$

8. SOME IMPORTANT RESULTS

- (i) If the coefficient of the r^{th} , $(r + 1)^{th}$ and $(r + 2)^{th}$ terms in the expansion of $(1 + x)^n$ are in H.P. then $n + (n 2r)^2 = 0$
- (ii) If coefficient of r^{th} , $(r + 1)^{th}$, and $(r + 2)^{th}$ terms in the expansion of $(1 + x)^n$ are in A.P. then $n^2 n(4r + 1) + 4r^2 2 = 0$
- (iii) Number of terms in the expansion of $(x_1 + x_2 +x_r)^n$ is $(x_1 + x_2 +x_r)^n$